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We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An approxi-
mate theoretical scheme is introduced to compute the velocity of the front and its diffusive wandering due to
the presence of noise. The theoretical approach is based on a multiple scale analysis rather than on a small
noise expansion and is confirmed with numerical simulations for a wide range of the noise intensity. We report
on the possibility of noise sustained solutions with a continuum of possible velocities, in situations where only
a single velocity is allowed without noisES1063-651X98)03611-3

PACS numbsgs): 05.40:+j, 47.54+r, 03.40.Kf, 47.20.Ky

I. INTRODUCTION in the noise intensity, but is closer to(stochastit multiple
scale analysis. We formally assume a separation of scales
The role of fluctuations in spatially extended systems is avhich introduces a small parameter, and propose a certain
subject of current interest in a great variety of out of equi-scaling of the different contributions to the front dynamics.
librium systemg1]. In particular, a class of problems which The procedure implicitly assumes a partial summation of the
has received considerable attention is that of fronts propaga@xpansion on the noise intensity, and is therefore not truly
ing between states of different stability. This generic prob-Systematic. However, we show with numerical simulations
lem is relevant to a large variety of systems in nonlinearthat the obtained results are remarkably good even for rela-
physics, chemistry, and biology. The effects of noise on frontively large noise intensities, and that the physical picture
propagation have been studied from different points of viewP€ehind the analysis is correct within a broad range of param-
[2—6]. In this paper we address the problem of fronts propa&ters. A remarkable example of this is that noise can sustain
gating in media where fluctuations have been externally imsolutions with a continuum of possible front velocitiés-
posed through randomness of some external control parar@r scenario of front selectipin cases which have a single
eter. We make use of a Langevin formalism, i.e., the modePossible velocity in the absence of noigeonlinear sce-
is formulated in terms of nonlinear partial differential equa_nario). The theoretical framework is also suitable to assess

tions which contain noise-source terms which in general aréhe validity of the diffusive assumption of the front wander-
multiplicative [2,3,7). ing and.predicts self-consistently its failure in some param-

It is commonly believed that the effects of external fluc- €t€r regimes.
tuations in front propagation, provided they enter multiplica- We are interested in the situation in which a front is de-
tively in the equations, are twofold: first, they induce a shiftscribed by a fieldg(x,t) with a globally stable statée.g.,
in the mean front velocity, and second, they produce a ran$= ¢s) invading anothefunstable or metastablstate(e.g.,
dom wandering of the front position with respect to its mean®=0). When external fluctuations are imposed, simulations
position. Concerning the mean front velocity, the problemshow [6] that the kinklike structure of the front is not de-
reduces to an analogous deterministic problem with renorstroyed even for moderately large noise intensities. Conse-
malized coefficient$6]. This is a very useful result because quently, these noisy fronts have a rather well defined posi-
the mean front velocity can then be analyzed within the usudion and average shape. The location of a front invading a
scenario of deterministic front propagatif8]. This implies ~ ¢=0 region can be defined by the integral
that the boundaries in parameter space separating the differ- 1 e
Znt qualitative behaV|or§ are preserved but shifted by noise. 2(t)= —— f dxd(x,t)=(z(t))— A(1), (1)

s a consequence, noise not only produces a quantitative bst Jxo

change in the front velocity but can change the qualitative
behavior of the front inducing a transition to a different re-where ¢, is the steady state left behind the front ga¢t))
gion of the parameter space. is the ensemble average of the front positid{(t) is the

Here we extend the formalism of RdB] to permit the instantaneous departure from the average position, and is
study of the wandering of the front position. This wanderingthus the quantity which models the stochastic wandering of
is assumed to be diffusive. Our approach provides explicithe front. The physical picture behind the present analysis is
predictions of the associated diffusion coefficient which gothat for time and length scales in which the front structure is
beyond previous results that were first-order expansions inot resolved, the quanti(t) can be modeled in a very good
the noise intensity7,2,3]. Our approach is not perturbative approximation by a simple stochastic process of the form
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2(t)=v(e)+DY3e) (1) 2) fusive wandering. The subtlety of the problem lies in the fact
’ that noise modifies simultaneously two aspects which are
where {(t) is a Gaussian white noise with zero mean anddifferent in nature(ballistic and diffusive propagationand
correlation(Z(t)£(t")y=28(t—t"), and wheres is a mea- Which cannot be naively associated to the usual separation
sure of the noise intensity in the original equation for thebetween deterministic and stochastic forces. The key idea of
front variable . The velocityo () for a givene is a con-  OUr approach is that the separation of these effects is related
stant. With these definitions the quantityft) is assimilated [0 @n actual separation of time scales on the shape fluctua-

to a Wiener process with tions of the front. On the one hand there are fast fluctuations
which generate an average front shape at relatively small
(A%(t))=2D(e)t. (3) time scales. A temporal coarse graining would thus eliminate

these fast fluctuations providing an averaged front shape

The mean VelOCiWT(g) was the object of study of Ref. Which is distinct from the deterministic one, and therefore
[6]. Here we are concerned with the computation of the dif-having a different velocity. On the other hand, the residual
fusion of coefficientD(g). The present approach will also Slow fluctuations of the front shape will then be responsible
allow for a self-consistent test of the validity of the abovefor the diffusive wandering.
simple physical picture. We will also test the theoretical pre- A crucial feature of multiplicative noise is that the mean
dictions through numerical simulations. These will be carriedvalue of the noise term in the Langevin equation is nonzero,
out on an ensemble of front realizations where the instantaeven though the noise itself has zero mean. This produces the
neous front position is measured as a function of time acso-called spurious drift. The mean value of the noise term
cording to Eq.(1). The coefficientD (&) is then evaluated can be worked out using Novikov's theorem for Gaussian
through a linear fit of A%(t)) vs time, after a short transient. Nnoises[9], and gives

The outline of this paper is as follows. In Sec. Il we 2 _ ,
develop the theorerical approach. In Sec. lll we present the e7g(¢) 7(x,1))=eC(0)(g" (¢)9())- (7
model and the explicit results. Section IV deals with a par-
ticular front solution sustained by the noise, and finally in
Sec. V some conclusions and comments are made.

According to this result Eq4) can be rewritten in a more
useful form,

2
Il. THEORETICAL APPROACH %: @+h(¢)+81/2pe(¢,x,t), (8)

Let us consider a nonlinear reaction-diffusion equation for

the field ¢(x), and suppose that the reactive tef(w) de-  where

pends on an external control paramegerWe assume that

this parameter fluctuates locally around its mean value ac- h(¢)=1(¢)+eC(0)g'(d)g(d) (9

cording toa—a(x,t) =a+&¥?5(x,t), wheree is a measure

of the strengh of the noise(x,t). Considering small fluc- and

tuations, we can expand the reaction term up to first order in

_ _ Ll ’
the noise. In this way the noise appears multiplying a func- R($x)=9g(¢) n(x,t) = *C(0)g’ ($)g(¢). (10
?grl:nOf the field, and the resulting equation has the genera+aking into account these definitiorR,is a stochastic term
with zero mean value and correlation
ap ¢ -
— =52 T (D) +Pg() n(x.1). @ (R($XOR($.X' "))

: : . =(p(X,1) n(X,H) p(X",t") (X' 1))+ O(&?).
We also assume that the noigéx,t) is Gaussian of zero
mean and correlation given by 11

With this rearrangement we already separate a systematic
)5(t—t’). (5) contribution from the noise term and a residual stochastic
one. This separation is useful because of the white character
of the noise which gives a very simple form of the average of
the noise term, with no explicit time dependence. This allows
for the definition(9) where the average of the extra term has
Reen eliminated. The resulting equation is thus of the same
type as the original one with a noise term which is still mul-
diplicative but with zero mean.
We now assume that the diffusive wandering of the front
is much slower than the intrinsic diffusion of the fieftlas
(p(x,t) p(x' t"))=28(x—x")S(t—t"). (6)  defined by the reaction-diffusion equati¢8). This means
that the formal parameter of the expansion will be the ratio
Our aim is to construct an approximate scheme whiclof D, that is, the actual quantity we want to determine, to the
formally separates the two main effects of noise, namely thatliffusion coefficient of Eq(8), which in our case is taken to
on the ballistic displacement of the front and that on its dif-be 1. The slow time scale will thus l2t.

[x=x'|
N

<MKUﬂWUV»=2C(

The parametei is the characteristic length of the spatial
correlation of the noise. The functi®(|x|/\) is normalized

in such a way that i\ is taken as finite but much smaller
than any other spatial scale of the system, in particular muc
smaller than the front width, then E¢5) can be approxi-
mated by the noise correlation of the Gaussian white spe
trum
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We assume tha#(x,t) has a frontlike structure with a zero(right) eigenvalue of thénon-self-adjoink linear opera-
well-defined shape centered in the instantaneous positiotor £. Becausel has vanishing eigenvalues, we must impose
z(t). It is then convenient to employ the reference framea solvability condition requiring than the right-hand side of
which moves with the front=x—z(t), in which the front  Eq. (14) should not drive any eigenfunction with zero eigen-
fluctuates around its mean shape. In the framework of ouvalue. Thus, the solvability condition for the existence of a
hypothesis of multiple scales we can distinguish the rapichontrivial solution to Eq(14) is that the inhomogenous part
shape fluctuations associated to the temporal d¢aléhich  should be orthogonal to the null space of the adjoint operator
are responsible for the systematic change of both the meaf',
front shape and the mean front velocity, and the slow fluc-
tuations of$(¢,t) that are coupled to the wandering of the . d? .
front position and that depend on the slow sdate The way _d_gz -v dé +h' (o). (16)
in which we explicitly separate both effects of the noise is by
introducing the mean front shapgy(€) =($(&,t)) and ex- |t can be shown by direct substitution that
pand ¢(¢,t) as

dgo|" - de
B(E)=do(£)+ 1(£DY), (12 (d—;> T an

where ¢, is assumed to be of ord&2 and has zero mean.
Therefore, we retain only the mean contribution of the rapi
fluctuations, and the leading order n of the slow fluctua-
tions. It is worth remarking that this scheme is not equivalent o — dey | - deg
to a standard small-noise expansion since, for instance, to f déevt ' (A(t) '
zeroth order, the front shapi,(¢) contains effects of noise - § §
from all orders in the noise intensity. (18)

By writing Eq. (8) in the reference frame which moves
with the front and by taking the average, we obtain to lead-
ing order inD

Ojs an eigenfunction of." of zero eigenvalue. So, the solv-
ability condition for Eq.(14) takes the form

—eR( ¢y, £,1) | =0.

Thus,A(t) verifies the stochastic differential equation

[= . dge"i(d ol dE)e VR o, £,1)
t =

( —
d’¢o —deyo * dée’é(dldE)?
e ag Hh(go =0, (13 [ -.dge**(doldE)

(19

and the diffusion coefficienD (&),
which is the equation for a deterministic fros (&) propa-

— . t t
gating at a constant velocity=(z(t)). Then, the mean pro- <A2(t))=2D(s)t=f dt’f dt"(A(t)A(t")), (20
file and front speed depend on both the external coupling 0 0
?rszef?ggl\tgerg;fgggﬁéﬁ?3}'3Of the nois€(0) through o 1 tained from Eqst6), (10), (11), and(19),

In some cases, Eq13) yields an equation similar to the o Opi 2 9
deterministic version of the original model E¢f) in the D(s)=¢ I”-dée™ (dgo/dE)°g*(bo) (21)
reference frame moving with the front but with renormalized [[”.dée’é(dgoldE)?)?
or effective parameters. In other cases, depending on the na-
ture of the external coupling(¢), Eq. (13) introduces new Where higher-order contributions gcoming from the cor-
nonlinearities. In any case, at this point one can in principlgelation(11) have been discarded. The higher-order terms in
use the standard recipes to calculate the selected mean profilevhich are kept inD(g) are only those contained in the
and velocity of the front by using the known results for de-lowest order inD(¢), that is, those contained in and ¢, .
terministic equations of this typi,6]. Equation(21) is the main result of this section and of this

To proceed to next order, we compare Etf) to Eq.(8)  paper. It is worth remarking that, in general, the diffusion
and we conclude that the lowest order of the stochastic termoefficientD (&) is not a simple linear function of the noise
e?R(¢,£,t) is DV2 Therefore, the orded*? of Eq. (8) is intensity ¢ due to the nontrivial dependence of the mean

given by propagation speed and of the mean front profile, on the

de effective noise intensitg C(0). In fact, D(e) can exhibit a
-0 (14  nonmonotonic, bounded, behavior as we shall see in the next
d¢ section.

L(p1)=Y2R(po,£,1)—A(t)

where the linear operata is defined as
lll. EXPLICIT RESULTS FOR A PROTOTYPE MODEL
d_2 +v—i+ h' (o) (15) The preceding results apply to situations in which fluctua-
dé? dé¢ o tions affect a front propagating between a globally stable
state and an unstable or metastable state. We want to have a
Differentiating Eq. (13) with respect to&, we have that control parameter to change the relative stability of these two
L(d¢g/d€) =0, showing that due to the translational invari- states and in this way to study the role of fluctuations in the

ance of Eq.(13), d¢y/d¢ is a (right) eigenfunction with a  different regimes of the deterministic front propagation sce-

E:
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nario studied in the literatufel0]. Without loss of generality That is, the multiplicative noise increases the relative weight
we takeg,=1 as the stable state agi=0 as the unstable of the nonlinearities of the deterministic model. So one ex-
or metastable one. A simple expression for the reaction terrmpects that the linear-marginal-stability criterion enlarges its
fulfilling these requirements is a cubic polynomial with two range of applicability as the noise intensity increases. As a
roots at 0 and 1 and a third roos, acting as a control consequence, we also expect an increase of the propagation

parameter. Explicitly the reaction term reads velocity.
We apply theansatz of reduction of ordenf van Saar-
f(p)=d(1-9)(p+a). (220 loos, from which the mean nonlinear front velocity is given
In this case{we restricta to the interval ¢ 3,1)] a deter- by (8]
mines the stability of the invadegl=0 state with respect to _ 2a'+c¢’ 2a+1
the globally stable stateé=1 and, consequently, it also U= = ) (27
fixes the selection criteria for the asymptotic front spéied \/E V2[1—-2eC(0)]

ear or nonlinear marginal stability criteripf8]. . ) . . )
Fluctuations both additive and multiplicative can be con-The asymptotic spatial behavior of the corresponding nonlin-

sidered in this problem. It is known that additive noise gen-€ar solution is given by the single exponential deeafn?,

erates bulk domains of the stable phase ahead of the froMith

and, consequently, a competition process arises between -

front propagation(short time$ and domain growth(long K= \F_ /1_ c(o o8

times [11]. According to Ref[11], the additive noise does A VA (0). (28)

not modify the deterministic scenario of dynamical front se-

lection. As long as the front exists as a transient state, its However, for the control parameter range>0, the ap-

mean propagation velocity will be determined by the deterplication of the linear-marginal-stability criterion for systems
ministic part of the model equation. Therefore, we will not evolving from initial step profilegor with a sufficiently fast

study here this particular case. decay shows that the mean linear propagation velocity is
If we assume fluctuations & as considered in the pre- .
ceding section, we have, without approximation, external v,=2\/§=2 a+eC(0) (29

fluctuations of multiplicative type:
with a steady front solution characterized by the asymptotic
ap P " spatial decay
=5, to(l-¢)(p+a)+e (1= P)n(Xt).
2
o ox k=+a'=atsC(0). 30)

(23)
The transition between the linear and nonlinear regime is

It is worth remarking here that the way in which controlr%eiven by those values af satisfying

parameter fluctuations appear is such that it preserves t
stationary stateg=0 and¢=1. In this way, the noise term 1
is most important at regions close to the front, but vanishes a= E—ZsC(O). (31
at the asymptotic states. This permits us to inhibit any
domain-growth dynamics th‘f"t could compete with the front oreover, initial slow-decaying profiles witk; <k, in the
propagation process, in which we are interested here, a ’\#1

. S ) ear regime and witl‘ki<k|2/kn| in the nonlinear regime
therefore the study will not be limited to short times. The propagate maintaining the initial decay and with an

new front profile¢ and mean front spead correspond then asymptotic velocity
to the solution of Eq(13), which for this model reads

, ) k?+a+&C(0) @2
d°¢o —ddeyg L Uik = k. :
d_gzﬂ) d—§+¢0(1—¢>o)(a +¢'d)=0 (29 i
Numerical simulations of the stochastic model of EZB)
with the effective parameters were done with a standard algorithm for multiplicative noise
, , [12] in a regular one-dimensional lattice with spatial mesh
a'=a+eC(0), c¢'=1-2sC(0). (29 size Ax=0.5 and time step\t=10"2. The effective noise
Equations(23) and(24) are supplemented with the boundary mrtignsrty is characterized by its value on the one-dimensional
conditions gnd,
lim G(&)=1, lim ¢(£=0 (26) £C(0)= . (33
E—— E—ow AX

because the multiplicative noise does not maodify theThis dependence of the effective noise intensity on the mesh
asymptotic steady states of the front. size Ax used in the numerical simulations is usual in multi-
In this model, the external fluctuations increase the effecplicative noise problems. The fact that noise values are taken
tive value of the control parameter and simultaneously as independent for different discretization cells in the nu-
reduce the coefficient of the highgstubic nonlinearityc. merical algorithm is equivalent to a finite correlation length
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FIG. 1. Mean front velocities as a function of the noise intensity \Y
£C(0) for several values of the control paramedenf the stochas- 0.00 3
tic model (20). Continuous lines display our analytical predictions 0.0 0.1 0.2 0.3
(25) and(26). Dashed lines divide the different front regimes: meta- £C(0)
stable M), nonlinear(NL), and linear ). Points and their error ) ) o
bars correspond to numerical simulation. FIG. 2. Analytical and numerical results for the scaled diffusion

coefficient,D(Ax) "%, for different values of the external control

. . . . parametera (see figure legendand the effective noise intensity.
of the noise of ordeAx. As long as this microscopic cutoff pj5ck symbols correspond to numerical simulations performed with
is much smaller than the front width, the noise can be asax=0.5, and hollow symbols to those withx=0.2. In both cases

sumed to be white. We will see that, while results for theWe usedAt= 10_2_ Results were obtained by a\/eraging3 fnts
front velocity depend only on the effective noise intensity asevolving from the same initial steplike profile in the time window
defined by the ratio E(33), the prediction of the front dif-  from t;=500 tot,;=1000.

fusion coefficientD(e) depends separately @randeC(0),

implying that the diffusive dynamics of the front is reminis- NCIS€ intensity. According to Eq21), however, it is clear
cent of the existence of such a spatial cutoff. that the mechanism by which the slow fluctuations of the

In Fig. 1 we plot the mean propagation velocity obtainedfi€ld ¢ generate velocity fluctuations, which in turn produce

for different values of the control parameteand the effec- € front diffusion, is sensitive to the actual mean front ve-
tive noise intensity: C(0). Thefronts start propagating from Iocn_y. For larger front vglocmes, such fluctt_Jat!ons are more
o . . Lo ) easily smoothed out. Since the front velocity itself is an in-
initial steplike profiles. The instantaneous front speed is de

ined b ; ; d £ i creasing function of noise intensity, the combined result is
termined by averaging over a time window of size 200.  h4ip () may decrease at sufficiently large noise intensities.
Continuous solid lines in this figure display the analytical

It _ A brief comparison with a previous method is in order
predictions of_ Eqs(27) and(29) showing an extremely good phere. The small-noise-expansion approfigf2,3 vields, at
agreement with the numerical results. o leading order in the noise intensity, a simple linear behavior
In Fig. 2 we compare the analytical prediction of E&1)  which corresponds to the same Eg1) but with the deter-
obtained numerically with simulation results. The agreementninistic front profile and velocity inside the integral. That
between numerical results and the analytical prediction isesult is thus recovered if the small noise expansion is per-
remarkably good even for large noise intensities. The mosformed directly on our result Eq21). The novelty of our
surprising feature of our result Eq21) is that the depen- result relies on the fact that contributions from all orders are
dence ofD (&) on the effective noise intensity is nonmono- included in the mean front profile and velocity, and a non-
tonic, with a maximum value at a finite noise intensity. Thistrivial interplay between the two effects of noise is thus ob-
is shown explicitly in Fig. 2 for the particular model E@3)  tained.
with a=0.1. The maximum ofD(e) occurs nearsC(0)  Note that the analytical resul2l) yieldsD(¢)=0 in the
=0.125. For a larger value,C(0)=0.20, the front spread- linear regime[1/2—2¢(0)=<a]. This result points out that
ing is slightly greater during a short initial transient whosethe assumption of diffusive spreading does not hold in the
duration is associated with the choice of the initial condition,inéar case, although it does not invalidate our previous re-
a steplike profile in our case. However, at late time, thes'ults on the propagation velocity shift. Preliminary numerical

eading is unexpectedly lower than the preceding case, égn.ulations show that the stpcha_lstic _spreading in _this linear
isp;eenl ir? ;:sigu 3xp y lower P Ing cas regime appears to be subdiffusive, i.6Az%)~t* with «

The nonmonotonic dependence Bfz) is the result of <1. The characterization of this regime remains open.
the interplay between the two effects of noise, namely modi-
fication of the ballistic component and generation of the dif-
fusive component. At very small noise intensities, one ex- In this section we want to call attention to interesting
pects that the diffusion coefficief(e) is increasing with  features of front dynamics in the presence of multiplicative

IV. NOISE-SUSTAINED FRONT SOLUTIONS
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O eC(0)=0.125
40 b x &C(0) = 0.200
linear regressions

o(x1)

(az

20

mﬁf 0 100 200 300
10 |

x»( X
| x;,;gy FIG. 4. Two stages in timé~=50 andt= 100, of a deterministic
x)g;: front (dashed lingsand a noisy fronfsolid lineg from the same
o , , , initial profile with k;=0.1. Simulations were performed with
0 500 1000 1500 2000 =-0.2,8C(0)=0.3,Ax=0.1, andAt=10"3,

t L . :
presence of noise via a quench from the linear marginal sta-

FIG. 3. Time evolution of the ensemble avera@€(t)) fora  bility region with a slow-decaying initial condition. In that
=0.1 and two different values of the effective noise intensity. Datacase we will be able to sustain fronts with velocities within a
have been obtained by averaging fidnts evolving from the same  continuous interval. Remarkably enough, this will be occur-
initial steplike profile withAx=0.5 andAt=0.1. Thin solid lines  ring in a situation in which, without noise, a unique velocity
correspond to linear regressions of data evaluated long after thg allowed. Notice that the preparation procedure is crucial.
initial transient. The figure illustrates the bounded behavior of theBy quenching the control parameter from the linear region,
diffusion spreading. FosC(0)=0.12(circles, D present a larger \ye take advantage of the fact that the solutions with larger
slope than for C(0)=0.20 (diamonds. velocities than the minimal one are also self-sustained.

. . , ! L . This effect is shown in Fig. 4, where we plot profiles
noise which are associated with noise-induced transitions b?'esulting from simulations of Eq(23) with a=—0.2 for

tween the different regions in parameter space correspondingise intensities:C(0)=0.3 andeC(0)=0. In both cases
to the distinct regimes of front propagation. As d|scu_ssed Mhe initial condition is a slow-decaying profile with=0.1.
Ref. [6], f[he IOC".#'On of the.bounde.mes betwegn t.he d'fferenRNhereas the deterministic case converges to the single non-
regions is modified by noise, while the quallt_atwe generalr ear solution with a fast decay, =12, Eq. (28), and
plqture IS preserved. As a consequence, the |ntro_duct|on elocity v,=0.42, EQ.(27), in the noisy case fluctuations
noise in points of parameter space which are relatively close . o L —
to such boundaries may change the qualitative behavior gfustain the initial slow decaly; and the velocity i =1.10
the front dynamics. as given by Eq(32).

The typical situation in all parameter space is that, if noise
is introduced, t.he front yelocity jumps toa larger va!ue_, and V. SUMMARY AND CONCLUSIONS
as soon as noise is switched off, the original velocity is re-
covered 6]. On the other hand, in the linear marginal stabil- We have constructed a nonperturbative scheme which is
ity region a continuum of possible velocities exists, whichbased on a multiple scale procedure to study front dynamics
can be observed if the system is prepared with an initialinder external multiplicative fluctuations. The method al-
condition with a(sufficiently slow arbitrary decay of the lows us to formally separate the effects of noise on the bal-
leading edge. This latter situation occurs, for instance, if thdistic and the diffusive components of the front propagation.
system undergoes a sudden change of an external contr@in the ballistic component it predicts a change in the front
parameter. However, if that quench is into the metastableelocity but it preserves the scenario of front selection for
region, the front solution will decay to the unique solution of deterministic propagation, with shifts in the bondaries be-
that case. tween different regions. The extension of the method to char-

The example we want to briefly discuss here is one iracterize the wandering of the front position relies on the
which noise can sustain solutions from the continuum ofassumption that this is diffusive. The self-consistency of the
possible velocities in situations where the deterministionethod predicts that the diffusive assumption is not always
model has a unique solution. This will happen when the suitvalid, but the method gives an explicit prediction for the
able control parameter has a value such that, in the absendé#fusion coefficient when it exists.
of noise, the system is in the metastable region, while the The analytical predictions of our approach are not system-
presence of noise places it into the linear region. Supposetic but improve significantly the previous results based upon
for instance, that the front is driven to such a state in thesmall noise expansions. Our results include a partial resum-



5500 ARMERO, CASADEMUNT, RAM’IREZ-PISCINA, AND SANCHO PRE 58

mation of higher orders in the noise intensity, which turn outtensity. On the contrary, the diffusion coefficient depends
to capture the dominant physical behavior for a wide rang&eparately or/Ax ande. This reflects the fact that the mod-
of noise intensities, much beyond the validity of previousels under consideration do not have a well defined continuum
results. This has been tested numerically for a particulalimit with white noise, and therefore results depend in gen-
model, with very good agreement between theory and simueral on the existence of a microscopic scale of noise. Such an
lation. additional length scale must in fact be an additional param-
The effect of multiplicative noise on the front velocity eter of the problem. Furthermore, this clearly indicates that
was already discussed in RE8], of which the present paper the correlation length of noise is an important parameter and
is an extension. Our main specific result here is the explicinay change drastically the scenario discussed here when it
prediction of the diffusion coefficient of the front wandering. hecomes comparable to or larger than the front width.
Its most salient feature is that it is not a monotonic increasing  Finally, we have discussed the existence of noise-
function of noise intensity. The mechanism by which slowsystained front solutions, in which the presence of noise

fluctuations produce this wandering turns out to be affectegnakes accessible a continuum of solutions in situations in
by the actual mean front velocity, which in turn is affected yhich this is not possible in the absence of noise.

by noise. Such a mechanism appears to be less effective for
larger velocities. Since for moderately large noise intensities
the front velocity increases significantly, the combined effect
may result in an actual decrease of the front diffusion coef-
ficient with increasing noise intensity. We acknowledge financial support from DireatiGen-

It is also remarkable that the diffusion coefficient is remi- eral de Investigacio Cientfica y Tecnica (Spain (Projects
niscent of the existence of a microscopic cutoff which requ-PB96-0241 and PB96-1001-C02)pand Commisionat per a
larizes the white noise. In the effective equation that is ob-Universitats i RecercéSpain (Project 1997SGR00439We
tained for the ballistic component, the coefficients arealso acknowledge computing support from FundaCita-
renormalized with corrections which depend on the combifana per a la Recerca-Centre de SupercomputieiGatalu-
nation e/Ax which we identify with the effective noise in- nya (Spairn).
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